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Research

The U.S. Environmental Protection Agency 
(EPA) and other regulatory agencies are inves­
tigating novel approaches to predict chemical 
toxicity, with the major goals being to enable 
the rapid screening of thousands of chemi­
cals that have not previously been character­
ized, to increase mechanistic understanding of 
chemical toxicity, and to reduce the number 
of animals required for toxicity testing. All of 
these goals initially require high-quality in vivo 
toxicity data in order to test and validate these 
new approaches. To support U.S. EPA’s 
ToxCast effort (Dix et  al. 2007), we have 
created the structured and curated Toxicity 
Reference Database (ToxRefDB) to tabulate 
information from guideline in vivo toxicity 
studies. ToxRefDB and related databases will 
help support computational analysis and mod­
eling of the links from molecular interactions 
through cellular and organ phenotypes all the 
way to whole-animal toxicity. This transfor­
mation of existing toxicity data will facilitate a 
transition to the National Research Council’s 
(NRC) vision for Toxicity Testing in the 21st 
Century (Collins et al. 2008; NRC 2007). The 
NRC envisions a focus on toxicity pathways 
that will link molecular assays to toxicity out­
comes in humans and ecological species.

Traditional toxicity testing for risk assess­
ment of single compounds or limited groups 

of compounds can cost millions of dollars 
per chemical and years of effort. Since 1970, 
the U.S. EPA has accumulated a vast store of 
high-quality regulatory toxicity information 
on thousands of compounds, most of which 
has been inaccessible for computational analy­
ses. The curation and structuring of chemical 
toxicity information into the readily accessible 
ToxRefDB have created a valuable resource for 
both retrospective and prospective toxicologic 
studies. ToxRefDB initially focused on captur­
ing developmental rat and rabbit, multigenera­
tion reproduction rat, and chronic/cancer rat 
and cancer mouse studies. In addition to the 
data model, we developed a detailed toxicity-
based controlled vocabulary for all the study 
types spanning clinical chemistry, pathology, 
reproductive, and developmental effects.

An important initial application of 
ToxRefDB is to provide anchoring of in vivo 
toxicity data for the U.S. EPA’s ToxCast 
research program, which has been designed to 
address the agency’s needs for chemical prior­
itization by using state-of-the-art approaches 
in high-throughput screening (HTS) and 
toxicogenomics (U.S. EPA 2008b). Nearly 
all of the ToxCast phase I chemicals are food-
use pesticide active ingredients that have 
undergone a full suite of mammalian toxic­
ity tests, creating an unparalleled reference 

set of toxicologic information. The complete 
and highly standardized data set provided by 
ToxRefDB facilitates analysis of the ToxCast 
phase I chemicals across chemical, study type, 
species, target organ, and effect. Additionally, 
ToxRefDB serves as a model for other efforts 
to capture quantitative, tabular toxicology 
data from legacy and new studies and to make 
these data useful for cross-chemical computa­
tional toxicology analysis.

Methods
Data characteristics. We collected reviews 
of registrant-submitted toxicity studies, 
known as data evaluation records (DERs), for 
roughly 400 chemicals from the U.S. EPA’s 
Office of Pesticide Programs (OPP) within 
the Office of Pollution Prevention and Toxic 
Substances (OPPTS). The file types of the 
DERs include TIFF, Microsoft Word, Word 
Perfect, and PDF formats, some of which are 
not directly text-readable. We indexed every 
DER file based on a file name convention 
that consisted of the pesticide chemical (PC) 
code, study identification number (MRID), 
study type identification number [based on 
870 series OPPTS harmonized health effect 
guidelines (U.S. EPA 1996)], species code, 
review identification number (TXR), and a 
review version code. The latter code identi­
fied the review as a primary review, secondary 
review, supplemental review, updated execu­
tive summary, or a deficient review. 

For the initial build of ToxRefDB, we 
collected and indexed a total of 4,620 DERs 
from OPP. These included five types of studies 
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Background: Thirty years of pesticide registration toxicity data have been historically stored as 
hardcopy and scanned documents by the U.S. Environmental Protection Agency (EPA). A signifi-
cant portion of these data have now been processed into standardized and structured toxicity data 
within the EPA’s Toxicity Reference Database (ToxRefDB), including chronic, cancer, develop-
mental, and reproductive studies from laboratory animals. These data are now accessible and mine-
able within ToxRefDB and are serving as a primary source of validation for U.S. EPA’s ToxCast 
research program in predictive toxicology.

Objectives: We profiled in vivo toxicities across 310 chemicals as a model application of 
ToxRefDB, meeting the need for detailed anchoring end points for development of ToxCast predic-
tive signatures.

Methods: Using query and structured data-mining approaches, we generated toxicity profiles from 
ToxRefDB based on long-term rodent bioassays. These chronic/cancer data were analyzed for suit-
ability as anchoring end points based on incidence, target organ, severity, potency, and significance.

Results: Under conditions of the bioassays, we observed pathologies for 273 of 310 chemicals, with 
greater preponderance (> 90%) occurring in the liver, kidney, thyroid, lung, testis, and spleen. We 
observed proliferative lesions for 225 chemicals, and 167 chemicals caused progression to cancer-
related pathologies.

Conclusions: Based on incidence, severity, and potency, we selected 26 primarily tissue-specific 
pathology end points to uniformly classify the 310 chemicals. The resulting toxicity profile classifi-
cations demonstrate the utility of structuring legacy toxicity information and facilitating the com-
putation of these data within ToxRefDB for ToxCast and other applications.
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from a variety of species: developmental in rat 
and rabbit, reproductive in rat, subchronic in 
mouse and rat, and chronic or cancer in rat 
and mouse. Approximately 1,000 DERs pro­
vided chronic and cancer data, and we selected 
a subset of these for curation into the data­
base to yield data on 310 unique chemicals: 
rat chronic/cancer studies on 283 chemicals, 
and mouse cancer studies on 267 chemicals. 
Each study assessed a single technical-grade 
chemical’s toxicity potential in a single species 
and study type. The first portion of the DER 
outlines the test substance, purity, lot/batch 
numbers, MRID, study citation, OPPTS test 
guideline, and reviewers of the study. The 
executive summary captures all of the basic 
study design information, including species 
and strain, doses, number of animals per 
treatment group, and any deficiencies in study 
protocol. 

Dose levels are listed in parts per million 
and through food consumption and body 
weight calculation or standard conversion 
as milligrams per kilogram body weight per 
day. Where possible, dose levels were listed as 
milligrams per kilogram body weight per day 
in ToxRefDB. The executive summary also 
describes adverse effects observed at all dose 
levels in the study. No observed adverse effect 
level (NOAEL) and lowest observed adverse 
effect level (LOAEL) are established based 
on adverse effects. The adverse effects used to 
derive NOAEL and LOAEL are referred to 
as “critical effects” in this article, regardless of 
their role in establishing reference dose levels 
in regulatory determinations for a chemical. 

The body of the DERs provides detailed 
test material, animal information, and full 
dose–response data in text and tables for a 
variety of “effect types”, including mortality, 
clinical signs, clinical chemistry, hematology, 
urinalysis, gross pathology, nonneoplastic 
pathology, and neoplastic pathology. For each 
effect type, we also specified an “effect target” 
(e.g., liver as target organ) and “effect descrip­
tion” (e.g., hypertrophy).

ToxCast phase I chemicals also included 
nonpesticidal chemicals such as perfluorinated 
compounds, phthalates, and other industrial 
chemicals. Although DERs and pesticide regis­
tration studies were not available for these 
chemicals, there were often high-quality and 
standardized chronic and other types of toxicity 
studies available from the National Toxicology 
Program, peer-reviewed literature, or other 
sources. We organized and evaluated data from 
these study reports and publications consistent 
with the information from the DERs.

Information on chemical identity and 
structure was provided by the U.S. EPA 
DSSTox (Distributed Structure-Searchable 
Toxicity) program (U.S. EPA 2007). 
ToxRefDB outputs are linked to informa­
tion from other sources through the U.S. EPA 

ACToR (Aggregated Computat ional 
Toxicology Resource) database (Judson et al. 
2008b; U.S. EPA 2008a). ACToR will also 
serve as the primary portal for public access to 
ToxRefDB and related outputs. ACToR stores 
the HTS data being generated by the ToxCast 
program and will link these HTS data with 
traditional toxicity data from ToxRefDB and 
other sources.

Relational model. In the development of 
ToxRefDB, a relational model approach was 
taken with input from other toxicity data­
base standards, including ToxML (Yang et al. 
2006). The resulting data model is semi­
hierarchical in nature: a single compound can 
be tested in multiple studies, each study can 
contain multiple treatment groups, and mul­
tiple effects can be observed in each treatment 
group. The data model is organized from a 
chemical-centric viewpoint to allow data inte­
gration and exchange with other data sources 
and to facilitate the linkage of the reference 
toxicity information to chemical-specific data 
generated using in vitro technologies (i.e., 
ToxCast). The relational model was then 
implemented into a table structure with estab­
lished relationships that ensure data integ­
rity, updateability, and standardization [see 
Supplemental Material, Figure 1 (http://www.
ehponline.org/members/2008/0800074/
suppl.pdf].

Development of a toxicity-based controlled 
vocabulary. The development of a controlled 
vocabulary within ToxRefDB was neces­
sary for the standardization of data captured 
across various studies and study types per­
formed over roughly 30 years. The nonredun­
dant list of terms across various information 
domains provided data integrity and search­
ability. We based study type terminology on 
the unique study types harmonized by the 
Organisation for Economic Co-operation and 
Development and the OPPTS (U.S. EPA 
1996). Specificstandardized terminology for 
study design was established for species/strain, 
method/route of administration, and units for 
dose and dosing duration. Treatment group-
related vocabularies were developed to estab­
lish the generation, gender, and dosing period.

A primary goal in evaluating the registrant- 
submitted toxicity studies is to establish 
NOAEL and LOAEL values for a variety of 
categorical end points, including systemic, off­
spring, maternal, parental, developmental, and 
reproductive toxicity across the various study 
types. These categorical end points are captured 
and normalized across studies for each effect 
responsible for deriving the NOAEL/LOAEL.

The development of a toxicologic effect 
vocabulary was approached in a domain- 
specific manner. For example, we derived 
clinical pathology terms from OPPTS guide­
lines and collected clinical pathology labo­
ratories and organ pathology terms from 

various public resources, including the 
National Toxicology Program’s Pathology 
Code Tables (2007). The vocabulary under­
went further standardization by mapping 
all synonymous terms to a single nonre­
dundant value. We took a taxonomical 
approach for establishing the finalized effect 
vocabulary based on a three-tiered hierarchi­
cal model, with the effect type at the top, 
followed by effect target and then effect 
description. Examples of effect type include 
clinical chemistry, hematology, urinalysis, 
body weight, mortality, gross pathology, 
nonneoplastic pathology, neoplastic pathol­
ogy, and developmental and reproductive 
effects. Subclasses of these types include spe­
cific target organs (e.g., liver, lung, spleen) or 
measured analytes (e.g., alanine aminotrans­
ferase, aspartate aminotransferase, choles­
terol). The specific combinations of effect 
type and target are then further subclassed 
based on a nonredundant descriptive term 
(e.g., increase, decrease, hypertrophy, atro­
phy). For organ pathology terms, each target 
organ has a set of regions, zones, and cell 
types that characterize the site of toxicity. 
The full effect vocabulary is available on the 
ToxRefDB home page (U.S. EPA 2008c).

Data input. The ToxRefDB Data Entry 
Tool was developed with Microsoft Access 
providing the user interface for all initial data 
input and is also available at the ToxRefDB 
home page (U.S. EPA 2008c). After the initial 
quality control (QC) steps discussed below, 
the data are migrated to ToxRefDB, which is 
implemented using the open-source MySQL 
platform. Data entry followed a series of pro­
tocols outlined in the ToxRefDB Standard 
Operating Procedure (SOP) documents that 
define mapping of toxicologic information 
to standardized fields, use of a standardized 
vocabulary, and extraction of biologically and 
statistically significant treatment-related effects.

Data QC and management. QC con­
sisted of 100% cross-checking of studies, 
systematic updates of ToxRefDB to ensure 
consistency across the studies, expert review 
of data outputs, and external review by stake­
holders. All data entered into ToxRefDB have 
undergone cross-checking, which entailed a 
second person validating each entered value 
based on the source information (primarily 
DERs). Systematic QC involved querying the 
database for potential inconsistencies (e.g., 
male-only effects being assigned to female 
treatment groups, or systemic LOAEL being 
set at multiple dose levels) along with updat­
ing vocabularies and related records. Expert 
review was performed on data outputs of the 
chronic/cancer rat or mouse studies, includ­
ing all of the end points captured in the data 
tables of this publication. In addition to inter­
nal QC, an ongoing process allowing stake­
holders the opportunity to review ToxRefDB 
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records is in place. The companies or regis­
trants that sponsor the data or support the 
registration of the chemical are reviewing the 
accuracy of the data relative to DERs and 
other risk assessment documents. To date, 
studies on 235 chemicals have been reviewed 
by registrants, and comments from these 
reviews indicate greater than 99% accuracy 
in capturing treatment-related effects from 
DERs. The stakeholder review process has 
facilitated additional information from addi­
tional studies, DERs, and other risk assess­
ment documents to be collected and entered 
into ToxRefDB.

Data output and analysis. The structured 
toxicity information stored within ToxRefDB 
can be extracted in various formats using 
MySQL queries. For the purpose of provid­
ing computable outputs, that is, quantita­
tive outputs amenable to statistical analysis, 
we used a consistent data output. The cross-
tabulated data output consisted of rows of 
chemical information (e.g., CAS registry 
number and chemical name) and columns 
of end points or effects, with the cross sec­
tion being the lowest dose at which the effect 
or end point was observed, that is, lowest 
effect level (LEL) in mg/kg/day. Even though 
NOAEL/LOAEL values can be queried from 

the database, the current analysis uses LELs, 
which do not reflect the NOAEL/LOAEL 
regulatory determinations derived from 
the studies and refer only to the minimum 
dose at which a specific effect or group of 
effects occurs. We used administered dose 
levels rather than molar concentrations to 
represent the chemically induced effects and 
end points, because of uncertainties in the 
pharmacokinetics linking administered dose 
to tissue concentrations reinforcing the fact 
that molecular weight alone cannot substi­
tute for dosimetry. Additional transformation 
of the dosing information was performed, 
including log-based and binning methods for 
potency. For example, we developed a bin­
ning method for illustrating relative potency 
to provide information into the sensitivity of 
the end point from the perspective of treat­
ment dose. To derive nonarbitrary dosing 
intervals, LEL for body weight changes were 
analyzed and separated into equivalent quin­
tile bins (data not shown). The resulting bins, 
≤ 15, ≤ 50, ≤ 150, ≤ 500, and > 500 mg/kg/
day, were then applied to all end points. For 
instance, a chemical that caused liver hyper­
trophy at 5 mg/kg/day would be assigned a 5, 
at 25 mg/kg/day a 4, and so on. If the effect 
was not observed, then a zero was assigned. 

Additionally, log-transformed potency values 
were derived using –log2 of LEL. We used 
log2 to reflect the minimal dose spacing, that 
is, doubling, typically used for in vivo toxi­
cology studies. A constant value of 12 was 
then added to zero-center the data, allow­
ing for zero to represent no observed effect. 
Therefore, a value of 1 would be equivalent 
to an effect at 2,048 mg/kg/day and 18 would 
be equivalent to 0.015625 mg/kg/day. The 
resulting data formats are highly amenable to 
statistical data analysis, including descriptive 
and predictive data-mining algorithms.

We carried out unsupervised two-way hier­
archical clustering across all chemicals of all 
effects with incidence greater than 5, as well as 
selected end points, based on log-transformed 
potency values using Pearson’s dissimilarity 
measure for both chemicals and effects. This 
analysis used Ward’s method for linkage (Ward 
1963) and the agglomerative clustering method 
as implemented in the Partek Discovery Suite 
(Partek Inc., St. Louis, MO). In order to assess 
statistically significant species concordance 
across different effects, a permutation study 
was carried out. For each effect, the associa­
tion between chemical and effect for the cor­
responding rat and mouse study was randomly 
permuted 1,000 times. We recorded the cross-
species concordance for all simulations (per­
mutations) and compared it with the observed 
concordance, thus giving an estimate of the 
concordance due purely to chance. Analyses 
were carried out using R version 2.6.1 (Ihaka 
and Gentleman 1996).

An initial 10% incidence cutoff was used 
to filter out individual and groups of effects 
for potential use in predictive modeling. This 
cutoff was chosen following the results of a 
related simulation study that demonstrated 
high levels of sensitivity and specificity for 
various machine learning methods on data 
with at least a 10% hit rate for predicted end 
points (Judson et al. 2008a). For other appli­
cations, it may be useful to add less frequently 
occurring effects and end points.

Results
Summary profiles of the ToxRefDB chronic/
cancer data set. To date, ToxRefDB has 
captured in vivo mammalian toxicity study 
information from DERs for 411 conventional 
pesticide active ingredients. This present 
analysis focuses on the systemic toxicity and 
cancer end points culled from chronic/cancer 
rat or mouse studies on 310 of the chemicals 
entered into ToxRefDB. ToxRefDB enabled 
analysis to be performed along toxicologically 
related axes, including by chemical, study 
type, species, and effect. Study duration, dos­
ing methods, data quality, guideline adher­
ence, and sex were additional parameters for 
data filtering. In looking across all chronic/
cancer rat and mouse studies, we assigned 

Table 1. Summary statistics for chronic/cancer rat and mouse studies entered into ToxRefDB. 

		  No. of	 Treatment	 Treatment groups		  Critical
Study	 Chemicals	 studies	 groups	 with effects	 Effectsa	 effectsb

Total chronic/cancer	 310	 577	 7,340	 3,082	 19,537	 3,119
Rat	 283	 298	 4,228	 1,721	 12,215	 1,816
Mouse	 267	 279	 3,059	 1,344	   7,416	 1,303
aTotal number of effect type, target, and description combinations assigned to any treatment group. bEffects that are cri-
teria for establishing the study-specific NOAEL/LOAEL.

Figure 1. Unsupervised two-way hierarchical clustering of 207 effects in rat (A) and 112 effects in 
mouse (B) with incidence > 5, for 310 chemicals with chronic/cancer toxicity data in ToxRefDB. Specific 
clusters or classes based on associated toxicities are indicated by the color-coded chemical dendrogram: 
seven clusters for rat, and six for mouse.
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19,537 effects to 3,082 different treatment 
groups in a total of 577 studies on 310 chemi­
cals (Table 1). Effects are a combination of 
study type, species, effect type, effect target, 
and effect description for a given chemical, 
for example, chronic/cancer, rat, neoplastic 
pathology, liver, and adenoma. Across the 
19,537 effects, 1,135 unique effects were 
observed, of which 484 were deemed criti­
cal effects, that is, criteria for establishing 
NOAEL/LOAEL, in at least a single study.

The ToxRefDB chronic/cancer data set on 
310 chemicals contained approximately 20,000 
observed effects in rat or mouse studies. We 
achieved a high-level view of a subset of these 
data, and the relationships among chemical, 
effect, and potency, by unsupervised two-way 
hierarchical clustering of 207 rat (Figure 1A) 
and 112 mouse (Figure 1B) effects. For the 
rat, the 283 chemicals separated into seven dis­
tinct clusters or classes of the chemicals based 
on these toxicity profiles. Approximately 70 
chemicals formed a cluster with an overall low 
incidence of toxicity, whereas the remaining 
chemicals displayed a unique set of toxicologic 
properties. More than 80 chemicals clustered 
as hepatotoxicants, and a subset of these also 
caused thyroid toxicity. Ten of the 15 conazole 
fungicides analyzed were in this hepatoxicity 
cluster. Clusters of chemicals exhibiting kid­
ney, spleen/anemia, or testicular toxicities were 
not enriched for a specific chemical structural 
class. Cholinesterase inhibitors clustered sepa­
rately from other chemicals and were enriched 
for organophosphates. In mouse, the 267 
chemicals included clusters of cholinesterase 
inhibitors, spleen/anemia toxicants, and hepa­
totoxicants comparable with that observed for 
rat. Of the 112 total effects clustered in the 

mouse, 28 of these were liver toxicities, dem­
onstrating the predominance of the liver as a 
target organ in the mouse. The unsupervised 
clustering of rat and mouse effects identified 
concentrations of effects and chemicals that 
were emphasized in subsequent, expert-driven 
approaches to chemical classification.

Toxicity-based classification of chemi-
cals. The distribution of effects across effect 
types (Figure 2A) revealed that nonneoplastic 
pathologies dominate determination of sys­
temic NOAEL/LOAEL, demonstrating the 
potential importance of this class of effects 
or end points to chemical regulation. The 
percentage of chemicals positive for an end 
point in both rat and mouse, over the total 
positive for the same end point in only the 
rat or mouse, was defined as “species concor­
dance.” Species concordance for nonneoplastic 
pathology was 68%. Of the 167 chemicals 
that caused neoplastic lesions in rat or mouse 
chronic/cancer studies, 35% caused neoplastic 
lesions in both rat and mouse. We observed 
one or more pathologies in 273 of the 310 
chemicals. The incidence of pathologic 
response, analyzed by target organ and species, 
was used to identify target organs for further 
investigation (Figure 2B). More than 90% of 
those 273 chemicals caused pathologies in the 
liver, kidney, thyroid, lung, testis, or spleen.

Whereas individual effects relating to 
highly detailed pathologic outcomes would 
provide classifications with the highest bio­
logical specificity, the limitations of classifying 
chemicals based solely on specific individ­
ual effects was apparent early in the analysis 
of ToxRefDB data. Only 11 specific, indi­
vidual pathologic effects were observed for 
more than 10% of the chemicals (Table 2). 

Liver hypertrophy is the only common effect 
across both species based on a 10% inci­
dence cutoff. In addition to low incidences 
of detailed pathologic effects, biases based on 
study design and pathology nomenclature 
limited the overall ability to compare chemi­
cal toxicities when we used individual effects. 
Grouping or aggregating related or near-syn­
onymous terms, such as liver adenoma, com­
bined adenoma/carcinoma, and carcinoma, 
resulted in more informative and statistically 
powerful sets of effects. Thus, the limitations 
of classifying chemicals based solely on spe­
cific individual effects were addressed by cre­
ating biologically related groupings of effects.

Grouping tumor end points and extending 
to include proliferative lesions. This aggre­
gative approach was illustrated by creating 
groups of neoplastic end points and the exten­
sion of these groups to include nonneoplastic 
proliferative lesions. The aggregation of neo­
plastic effects for each target organ resulted 
in an increase in the number of useful group­
ings beyond the individual mouse liver tumor 
effects shown in Table 2. However, the end 
points were still limited to mouse liver and rat 
thyroid neoplasia, based on an initial > 10% 
incidence cutoff. Associating the neoplastic 
end points with proliferative lesions increased 
the number of target organs to include liver, 
kidney, thyroid, lung, and testes. In general, 
only neoplastic lesions are considered indica­
tive of rodent carcinogenicity. However, 
including nonneoplastic proliferative lesions 
provides a conservative model for assessing 
and predicting rodent tumorigenic poten­
tial, based on the assumption that prolonged 
proliferative response leads to eventual tumor 
formation. A simulation study was performed 
to assess whether the concordance between rat 
and mouse effects occurred at a rate greater 
than chance across neoplastic and prolifera­
tive classifications. Extending tumorigenicity 
groupings to include proliferative lesions 
significantly increased species concordance 
across numerous target organs, including the 
liver and kidney [see Supplemental Material, 

Figure 2. ToxRefDB chronic/cancer incidence data summarized by effect type (A) and by target organ 
pathology (B) for 310 chemicals with rat or mouse studies. Blue bars, total percentage of chemicals with 
that observed effect; black bars, percentage of chemicals for which that effect was used to derive systemic 
NOAEL/LOAEL levels.

Rat

Rat

Mouse

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Rat

Rat

Mouse

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Rat

Mouse

Bo
dy

w
ei

gh
t

Cl
in

ic
al

ch
em

ist
ry

He
m

at
ol

og
y

Or
ga

n
w

ei
gh

t
Gr

os
s

pa
th

ol
og

y

Pa
th

ol
og

y
(n

on
-

ne
op

la
st

ic
)

Pa
th

ol
og

y
(n

eo
pl

as
tic

)

Li
ve

r
Ki

dn
ey

Th
yr

oi
d

Lu
ng

Sp
le

en
Te

st
is

Ot
he

r

25 50 75 100
Percent chemicals with observed

effect type

25 50 75 100
Percent chemicals with observed

pathology by target organ

A B

Critical effects
All effects

Table 2. Pathology observed for > 10% of ToxRefDB 
chemicals in chronic/cancer rat and mouse studies.

		  Percent 
Target organ	 Effect	 observed

Rat 
  Liver	 Hypertrophy	 25
  Kidney	 Nephropathy	 14
  Liver	 Vacuolization	 12
  Thyroid	 Adenoma	 11 
  Thyroid	 Hyperplasia	 11
Mouse
  Liver	 Hypertrophy	 25
  Liver	 Adenoma	 21
  Liver	 Necrosis	 16
  Liver	 Adenoma/carcinoma combined	 14
  Liver	 Pigmentation	 14
  Liver	 Carcinoma	 12
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Figure 2 (http://www.ehponline.org/​members/ 
2008/0800074/suppl.pdf)].

Mapping of toxicity end points to a can-
cer progression schema. Relationships between 
effects and the relative severity of those effects 
are not inherent to the database structure. 
Figure 3A presents a conceptualization of the 
end point progression schema in which chemi­
cals were scored from 0 to 5 for each target 
organ, based on the severity of the effect, rang­
ing from no observed pathology (0) to neoplas­
tic lesions (5). End-point progression scoring 
reduced the possible chemical classifications 
to a single ordinal score (i.e., scores 0–5) for 
each target organ. Figure 3B presents the dis­
tribution of end-point progression scores for 
rat and mouse, liver and kidney. Examples 
of the impact of this scoring system include 
resmethrin, which caused treatment-related 
increases in a preneoplastic lesion (i.e., hyper­
plastic nodules) in the liver without progressing 
to a tumor. In contrast, metaldehyde caused 
treatment-related increases in liver tumors but 
was not identified as causing any preneoplas­
tic lesions, even though preneoplastic lesions 
can be assumed to have occurred as a precur­
sor event to liver tumor formation. Using the 
end-point progression scoring system allowed 
reasonable comparison of these two chemicals, 
if desired, by linking the preneoplastic score 
of 4 for resmethrin, to the neoplastic score of 
5 for metaldehyde, along the continuum of 
end-point progression. The incidence of liver 
pathology between rats and mice was com­
parable when we grouped end-point progres­
sion scores. More than 50% of the chemicals 
tested resulted in a range of nonneoplastic to 

neoplastic lesions (i.e., scores 2–5). However, 
the relative severity for liver pathologic pro­
gression in mice was higher than in rats: 25 
chemicals caused rat liver tumors, whereas 80 
chemicals caused mouse liver tumors.

Selected end points for predictive mod-
eling. In addition to end points specific to 
various target organs, chemicals were classi­
fied with respect to multigender, multisite, 
or multispecies tumorigenicity (Table 3). Of 
the 310 chemicals in the chronic/cancer data 
set for which 240 chemicals were tested in 
both species, 167 chemicals were classified 
as tumorigens; 109 of those chemicals were 
multigender, multisite, or multispecies tumori­
gens. Of the 283 chemicals tested in the rat, 
42 chemicals were classified as multigender 
and multisite tumorigens. Of 267 chemicals 
tested in the mouse, 57 and 25 chemicals were 
classified as multigender and multisite tumori­
gens, respectively. Of the 240 chemicals tested 
in both species, 49 chemicals were classified as 
multispecies tumorigens. The distribution of 
relative potency values indicated that the rat 
was commonly more sensitive than the mouse 
for multigender and multisite tumorigenicity. 
In the rat, 38% of the multigender and 45% 
of the multisite incidences were at ≤ 50 mg/
kg/day (i.e., relative potency values of 4–5), 
compared with 23% and 28% in the mouse. 
Conversely, 39% multigender and 28% multi­
site tumorigenicity occurred in the mouse at 
> 500 mg/kg/day (i.e., relative potency value 
1), compared with 17% and 10% in the rat. 
Multispecies tumorigenicity was not achieved 
at doses ≤ 15 mg/kg/day, and 41% of inci­
dences occurred at > 500 mg/kg/day.

Unsupervised and expert-driven approaches 
to end-point selection and subsequent chemical 
classification yielded near identical sets of target 
organs from which to select specific effects or 
aggregated effects. Based on incidence, severity, 
potency, and significance, 25 end points from 
chronic/cancer rat and mouse studies were 
selected for subsequent ToxCast predictive 
modeling (Figure 4A). The addition of multi­
species tumorigens raised the total to 26 end 
points, each caused by 20 or more chemicals. 
Besides the multispecies tumorigen end point, 
16 of the end points were from rat studies 
and 9 end points were from mouse. The same 
four end points were characterized in both rat 
and mouse liver, affording direct comparisons 
across species for tumors, proliferative lesions, 
apoptosis/necrosis, and hypertrophy. The only 
other frequent target organ common to both 
species was the kidney. Frequent rat-specific 
target organs included thyroid, testis, and 
spleen, whereas the only target organ specific to 
mouse was the lung. Unsupervised hierarchical 
clustering of the 16 rat end points (Figure 4B) 
and the 9 mouse end points (Figure 4C) dis­
played the relative distribution of the selected 
end points and chemicals. Of the 283 chemi­
cals with a rat chronic/cancer study, 218 were 
positive in at least one of the selected end 
points, whereas 155 of 276 chemicals with a 
mouse cancer study were positive in at least 
one selected end point. Rat and mouse end 
points clustered primarily by target organ, with 
distinct clusters of thyroid, spleen, kidney, and 
liver toxicants in the rat. The high incidence of 
liver tumorigens in the mouse drives chemical 
groupings. However, chemicals causing or not 
causing liver hypertrophy and necrosis appear 
to segregate into two large groups of liver toxi­
cants. In both species, the selected chronic/can­
cer end points represent the robust patterns of 
toxicologicresponse shown in Figure 2A and B. 
A full listing of the chronic/cancer end points 
derived from ToxRefDB for ToxCast predic­
tive modeling, with their associated LELs, 
log-transformed potency, and relative potency 
values, are available on the ToxRefDB home 
page (U.S. EPA 2008c).

Discussion
Advancing alternative testing methods for 
assessing chemical safety requires an informed 
transition from the current toxicity testing to 
systems that are higher throughput, more pre­
dictive, and not as dependent on the extensive 
use of animals. To support this transition, 
we created ToxRefDB to capture a rich set 
of existing in vivo laboratory animal toxicity 
data on a group of environmentally relevant, 
well-studied chemicals. Pesticide active ingre­
dients have comprehensive toxicity profiles 
that are opportune data sets for creating a 
bridge from in vivo to in vitro toxicology. 
ToxRefDB digitizes and stores toxicity data 

Figure 3. (A) ToxRefDB systemic toxicity and cancer outcomes represented along an end-point progression 
continuum. This schema was used to derive a severity score for each chemical based on the maximum 
value within a target organ. (B) Based on end-point progression, 310 chemicals were scored for liver and 
kidney pathology in rat and mouse chronic/cancer studies. Clinical chemistry used in this analysis is limited 
to target-organ–specific analytes (e.g., alanine aminotransferase for liver, and urea nitrogen for kidney).
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in a structured and searchable format, and 
using structured data mining methods makes 
these data a computable resource for predic­
tive toxicology efforts such as the U.S. EPA’s 
ToxCast program (U.S. EPA 2008b).

Individual toxicity effects based on unique 
type, target, and description yielded only a small 
number of in vivo end points across a significant 
number of chemicals supportive of robust pre­
dictive modeling. However, grouping effects by 
effect type and target often collapsed hundreds 

of individual effects into a single end point, 
common to dozens of chemicals. The goal was 
to strike a balance between maintaining biologi­
cal specificity across a group of related effects 
while increasing total incidence for effects 
across a critical mass of chemicals. For example, 
extending tumor end points to include prolif­
erative lesions increased not only total incidence 
but also species concordance and thus increased 
confidence in characterizing a chemical’s poten­
tial toxicity. Grouping proliferative lesions 

also addressed other potential factors, such as 
changes in pathology nomenclature over time 
(Wolf and Mann 2005) and reporting incon­
sistencies. Deriving end points based on groups 
of effects yielded organ- and species-specific 
end points in the liver, kidney, thyroid, testis, 
spleen, and lung in rats or mice with a high 
enough incidence across ToxRefDB chemicals 
to support predictive modeling.

Another approach for addressing the 
limitations of profiling chemicals based on 

	 Rat	 Mouse	
Chemical	 Multigender	 Multisite	 Multigender	 Multisite	 Multispecies

Carbaryl	 2	 2	 1	 1	 2
Dipropyl	 1	 1	 1	 1	 1
  isocinchomeronate
Fentin	 5	 5	 4	 	  4
Dazomet	 5	 5	 3	 	  4
Clodinafop-propargyl	 4	 4	 4	 	  4
Lactofen	 3	 3	 5	 	  4
Dimethoate	 	  5	 4	 4	 4
Malathion	 4	 4	 1	 	  1
Diuron	 4	 3	 	  1	 1
Dacthal	 2	 2	 1	 	  1
Isoxaflutole	 2	 2	 1	 	  1
Spirodiclofen	 2	 2	 1	 	  1
Diclofop-methyl	 4	 4	 	 	   4
Cinmethylin	 	  3	 3	 	  3
Imazalil	 	  3	 3	 	  3
Nitrapyrin	 	 	   3	 3	 3
Propoxur	 2	 2	 	 	   2
Daminozide	 	 	   2	 1	 2
Thiacloprid	 4	 4	 	 	   1
Vinclozolin	 3	 4	 	 	   1
Di(2-ethylhexyl)phthalate	 1	 	  1	 	  1
Folpet	 	  5	 1	 	  1
MGK (octacide 264)	 	  2	 1	 	  1
Iprodione	 	 	   1	 1	 1
Cacodylic acid	 5	 	 	 	    3
Propyzamide	 	  4	 	 	   3
Oxadiazon	 	 	   5	 	  3
Resmethrin	 2	 	 	 	    2
Pyrithiobac-sodium	 1	 	 	 	    2
Bentazone	 	  2	 	 	   2
Fluthiacet-methyl	 	 	   5	 	  2
Metaldehyde	 	 	   2	 	  2
Triflusulfuron-methyl	 	 	   2	 	  2
Fludioxonil	 	 	 	    2	 2
Prodiamine	 1	 	 	 	    1
Tepraloxydim	 	  2	 	 	   1
Clofencet-potassium	 	  1	 	 	   1
Isoxaben	 	 	   1	 	  1
Pymetrozine	 	 	   1	 	  1
Topramezone	 	 	   1	 	  1
Triadimefon	 	 	   1	 	  1
Oryzalin	 4	 4	 	 	   
Simazine	 4	 4	 	 	   
Tebufenpyrad	 4	 4	 	 	   
Dichloran	 3	 3	 	 	   
Dimethenamid	 3	 3	 	 	   
Prosulfuron	 3	 3	 	 	   
Acetochlor	 3	 2	 	 	   
Ametryn	 2	 3	 	 	   
Oxytetracycline HCl	 1	 1	 	 	   
Bifenthrin	 	 	   5	 5	 
Disulfoton	 	 	   5	 5	 
Metam-sodium	 	 	   4	 5	 
Quizalofop-ethyl	 	 	   4	 4	 

	 Rat	 Mouse	
Chemical	 Multigender	 Multisite	 Multigender	 Multisite	 Multispecies

Tribufos	 	 	   3	 4	 
Amitraz	 	 	   3	 3	 
Fenoxycarb	 	 	   3	 3	 
Spiroxamine	 	 	   3	 3	 
Tefluthrin	 	 	   3	 3	 
Permethrin	 	 	   2	 2	 
Trifloxystrobin	 	 	   2	 2	 
Chloridazon	 	 	   1	 1	 
Triforine	 	 	   1	 1	 
Dichlorvos	 5	 5	 N	 N	 N
Pyraclostrobin	 5	 5	 N	 N	 N
Alachlor	 4	 3	 N	 N	 N
Captan	 N	 N	 3	 3	 N
Maneb	 N	 N	 2	 2	 N
Azafenidin	 	 	 	 	     4
Lindane	 	 	 	 	     4
Fluazinam	 	 	 	 	     3
Paclobutrazol	 	 	 	 	     3
Acephate	 	 	 	 	     2
Linuron	 	 	 	 	     2
Propanil	 	 	 	 	     2
Triasulfuron	 	 	 	 	     1
Fipronil	 4	 	 	 	    
Thiabendazole	 3	 	 	 	    
Boscalid	 2	 	 	 	    
Pendimethalin	 2	 	 	 	    
Pyrimethanil	 2	 	 	 	    
5,5-Dimethylhydantoin	 1	 	 	 	    
Cyazofamid	 1	 	 	 	    
Chloropicrin	 	  5	 	 	   
Fenamiphos	 	  5	 	 	   
Molinate	 	  5	 	 	   
Chlorpyrifos-methyl	 	  4	 	 	   
Fluoxastrobin	 	  1	 	 	   
Fenitrothion	 	 	   5	 	  
Cyproconazole	 	 	   4	 	  
Prochloraz	 	 	   4	 	  
Thiamethoxam	 	 	   3	 	  
Bispyribac-sodium	 	 	   2	 	  
Piperonyl butoxide	 	 	   2	 	  
Propiconazole	 	 	   2	 	  
Acifluorfen-sodium	 	 	   1	 	  
Difenoconazole	 	 	   1	 	  
Primisulfuron-methyl	 	 	   1	 	  
Pyraflufen-ethyl	 	 	   1	 	  
Thiodicarb	 	 	   1	 	  
Fenoxaprop-ethyl	 	 	 	    4	 
Buprofezin	 	 	 	    2	 
Propargite	 4	 	  N	 N	 N
Dichlobenil	 2	 	  N	 N	 N
Quintozene	 2	 	  N	 N	 N
Tralkoxydim	 	  3	 N	 N	 N
Benomyl	 N	 N	 3	 	  N
Cloprop	 N	 N	 2	 	  N
Thiophanate-methyl	 N	 N	 1	 	  N

Relative potency: 5, ≤ 15 mg/kg/day; 4, ≤ 50 mg/kg/day; 3, ≤ 150 mg/kg/day; 2, ≤ 500 mg/kg/day; 1, > 500 mg/kg/day; N, not assessed (no study available).

Table 3. Multigender, multisite, and multispecies tumorigens in ToxRefDB.
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individual toxicity effects was to compare the 
severity of these effects across a continuum of 
pathophysiology. Because the progression to 
cancer (Hanahan and Weinberg 2000) and 
organ-specific progression to tumorigenicity 
(Cohen and Arnold 2008) have been well 
characterized, we created a five-point sever­
ity scoring system to encode this. Using this 
approach, ToxRefDB provides a quantitative 
value associated with the key events in the 
progression to tumor formation and cancer. 
Incorporating additional information on the 
severity of in vivo effects in ToxRefDB may 
be fruitful in future modeling and predictive 
toxicology efforts. Additional data not cur­
rently in ToxRefDB, including incidence data, 
would have to be added for more detailed 
dose–response analyses and assessment of the 
magnitude of change for specific effects.

Because many of the tumors caused by 
chemical exposure in ToxRefDB occur at 
high doses that are many orders of magnitude 
removed from potential human exposures, it 
is useful to also consider multigender, multi­
site, and multispecies tumorigenicity in the 
course of evaluating chemicals. Current U.S. 
EPA cancer risk assessments use multisite and 
multispecies tumorigenicity as indicators of 
increased significance for tumor findings (U.S. 
EPA 2005). Thus, the tumorigenic end points 
selected for ToxCast predictive modeling 
included multigender, multisite, and multi­
species tumorigens. Additional analyses of 

these multiplicities in the tumorigenicity data 
of ToxRefDB are under way, with the goal of 
improving hazard assessments, chronic/cancer 
study protocols, and future data requirements.

Success in predicting target-organ–specific 
effects in ToxCast will depend on numerous 
factors, including the target, species, and dose 
response of the effects that are being predicted. 
In the present analysis of ToxRefDB, we iden­
tified effects in the liver, kidney, thyroid, tes­
tis, spleen, and lung in rats or mice that we 
will now attempt to predict using in vitro data 
from ToxCast. Because species concordance 
of the in vivo effects in ToxRefDB was fairly 
limited, success in predicting species-specific 
versus multispecies effects will be an interest­
ing outcome of ToxCast. The dose responses 
for selected end points are also provided by 
ToxRefDB, including log-transformed 
potency values conducive to computational 
analysis, and relative potency values that facili­
tate comparisons across chemicals and end 
points. These quantitative data should facili­
tate development of new in vitro and in silico 
methods to predict in vivo chemical toxicity.

Although numerous studies have evalu­
ated the use of biochemical, cell-based, and 
genomic assays to build predictive models of 
toxicity, these efforts have usually been lim­
ited to only a partial view of the complex biol­
ogy underlying tissue, organ, or whole-animal 
toxicity. By probing such a broad spectrum of 
biology in the hundreds of ToxCast assays, the  

“toxicity signatures” will be optimally pre­
dictive and representative of a broad range 
of in vivo toxicity end points. A variety of 
statistical techniques and machine learning 
approaches will be used to mine this com­
plex data set for toxicity signatures with high 
sensitivity and specificity. These include 
linear discriminant analysis, support vector 
machines, and neural networks. In addition 
to these automated approaches, more hypoth­
esis-driven, biologically based signatures will 
assist in filling the large gap between molecu­
lar and phenotypic end points. It is expected 
that assays of multiple types, probing multiple 
pathways, will be required to predict in vivo 
toxicity across a wide range of chemicals—
this is the approach taken within ToxCast 
and ToxRefDB.

ToxRefDB continues to develop, add­
ing toxicity end points from additional study 
types, including multigeneration reproductive 
and prenatal developmental tests, for predictive 
modeling in the ToxCast research program. 
Besides expanding toxicity coverage to other 
study types, ToxRefDB will expand in chemi­
cal coverage to include more nonpesticide 
chemicals. As each of these ToxRefDB data 
sets pass through U.S. EPA quality and clear­
ance processes, they will be made publicly 
available through peer-reviewed publications, 
ToxRefDB home page, and ACToR. The con­
tents of the entire database will be viewable and 
searchable in the future through a Web-based 

Figure 4. (A) The 16 rat and 9 mouse ToxRefDB end points from chronic/cancer studies selected for ToxCast predictive modeling. Two-way hierarchical clustering 
of the rat (B) and mouse (C) end points based on log-transformed potency values. Dose and potency values for all chemicals relative to these 25 end points are 
provided on the ToxRefDB home page (U.S. EPA 2008c).
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query tool located on the ToxRefDB website 
(U.S. EPA 2008c).

ToxRefDB offers unparalleled amounts 
of legacy toxicity information on environ­
mental chemicals captured in a structured 
format, providing a platform for repeated and 
updated chemical characterizations. Creating 
the ability to search and filter across 30 years’ 
worth of toxicity data required extensive 
amounts of data normalization, annotation, 
and curation and was made possible through 
the development of a robust standardized 
vocabulary for the fields and data elements 
within ToxRefDB. In the present study, we 
used chronic toxicity data in ToxRefDB to 
derive toxicity profiles for the ToxCast phase I 
chemicals, yielding a set of toxicity-based and 
predictable end points. In future applications 
of ToxRefDB, researchers, risk assessors, and 
regulators will use the database for retrospec­
tive and modeling projects looking across a 
large landscape of chemical and toxicity space.
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